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Abstract

Teaching simulated biped robots to walk is a popular problem in machine
learning. However, until this thesis, evolving a biped controller has not been
attempted through an indirect encoding, i.e. a compressed representation of
the solution, despite the fact that natural bipeds such as humans evolved
through such an indirect encoding (i.e. DNA). Thus the promise for indirect
encoding is to evolve gaits that rival those seen in nature. In this thesis, an
indirect encoding called HyperNEAT evolves a controller for a biped robot
in a computer simulation. To most effectively explore the deceptive behavior
space of biped walkers, novelty search is applied as a fitness metric. The
result is that although the indirect encoding can evolve a stable bipedal
gait, the overall neural architecture is brittle to small mutations. This result
suggests that some capabilities might be necessary to include beyond indirect
encoding, such as lifetime adaptation. Thus this thesis provides fresh insight
into the requisite ingredients for the eventual achievement of fluid bipedal
walking through artificial evolution.
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1 Introduction

For the past two decades, digital artists and engineers have sought to un-

derstand and reproduce human bipedal locomotion. Digital artists have ele-

gantly reproduced human bipedal locomotion in films and video games while

engineers have attempted to delicately engineer bipedal robots to walk like

humans. While both enterprises have met with varying levels of success, their

methods suffer from the need for fine-tuning the model to perform specific

tasks. If a new task is required of the bipedal model, it must be modified and

again fine-tuned by experts to perform the new task. In contrast, humans are

capable of learning and adapting to new bipedal locomotion tasks as they are

encountered with relative ease (e.g. walking up and down a flight of stairs

for the first time). In principle, because dynamic bipedal control evolved in

humans, computers may be capable of such a task as well. Thus the goal of

this thesis is to take a step towards evolving a robust bipedal control system

that can learn to walk a bipedal model as far as possible, without providing

any prior knowledge on how to walk or even what walking is.

Solving this problem is important because it would open up many pos-

sible applications. In the field of robotics, evolved bipedal control systems

could replace painstaking fine-tuning by robotics experts and provide a more

dynamic bipedal control system for a bipedal robot. Within video games,

evolved bipedal models could provide a more dynamic and realistic expe-

rience for viewers because the model is capable of reacting dynamically to
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new situations, instead of reacting in a pre-programmed fashion that looks

stereotypical. Furthermore, in animated film, evolved bipedal models could

save digital artists significant time by providing a basic walking model that

can be fine-tuned with little effort to walk with a desired gait. Because of

its many possible applications, the biped walker problem is a popular area

of research in computer science and, more specifically, machine learning.

1.1 The Biped Walker Problem

Ultimately, the goal of the biped walker problem is to create a controller for

a biped model that is capable of walking much like a human biped. That is,

the problem seeks to produce a biped walker controller which not only walks

with a stable, oscillatory gait, but is also capable of adapting to different

terrains and biped models with relative ease. That way, if the biped walker

controller encounters a new terrain (e.g. such as encountering stairs after

walking on a flat surface) or a new model (e.g. the biped model’s foot is

damaged), the controller is robust enough to adapt to these changes and

continue walking with a stable, oscillatory gait. Thus an effective controller

for a biped walker is not only capable of balancing and oscillation, but also

of adaptation.
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1.2 Contributions

The set of experiments in this thesis explore for the first time the poten-

tial for indirect encoding, which means a compressed representation of the

solution controller, to evolve effective biped walking policies. Experimental

results confirm that indirect encoding in fact can evolve oscillatory gaits and

the ability to balance for several meters; however, the bipeds still suggest

room for improvement, implying that a further ingredient may ultimately

need to be added to such systems to produce genuinely fluid motion and

seamless balance. Thus the major contributions of this thesis are to lay the

groundwork for further work in indirectly evolving bipedal walking, and to

suggest the need for an added capacity for refinement, which may be made

possible by evolving adaptive neural networks in the future.

1.3 Outline

The thesis commences with a brief review of NEAT, HyperNEAT and CTRNNs.

Introduced in Section 3 are the Substrates, Functional Modularity equations

and the Novelty Search fitness metric as they are implemented in the Biped

Walker experiment. The Biped Walker experiment is described in Section 4.

In Section 5, the results of the Biped Walker experiment are provided and

analyzed. Discussed in Section 6 are the insights gained from this thesis and

the proposed course of research stemming from these insights.
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2 Background

This thesis builds on a representation called compositional pattern producing

networks (CPPNs), which have been found to generate patterns with geo-

metric regularities (Stanley 2007). The further idea that CPPNs can encode

the connectivity of neural networks is the basis of the HyperNEAT algorithm

(Stanley et al. 2009), which evolves the bipeds in this thesis. By utilizing

CPPNs to express the connectivity of a neural network, HyperNEAT is ca-

pable of expressing neural networks with complex connectivity patterns that

are sensitive to the geometry of the problem (Clune et al. 2009b; Gauci and

Stanley 2008, 2007; Stanley et al. 2009). The interesting potential of CPPNs

is that the inherent geometry in the biped walker problem may be possible to

exploit. HyperNEAT has also been shown to perform well on similar prob-

lems with high regularity, such as quadruped walking (Clune et al. 2008).

Both NEAT and HyperNEAT are reviewed in this section.

2.1 Biped Walking in Neuroevolution

Evolutionary algorithms and neuroevolution techniques have been applied to

the biped walker problem domain with some success in the past (Allen and

Faloutsos 2009; Hein et al. 2008; Reil and Husbands 2002; Van de Panne and

Lamouret 1995). However, these attempts utilized more simple encodings

that did not aim to learn regularities. Instead, researchers traditionally build

in some knowledge of the domain from the start, such as enforced symmetry
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or oscillation. These constraints make evolution easier, but they also limit

the creativity of its results. As of this writing, HyperNEAT has not yet been

successfully applied in the biped walker problem domain. Furthermore, the

hope is that HyperNEAT’s ability to learn from geometry will help it evolve

biped walking even without a priori constraints provided by the experimenter.

Finally, continuous time recurrent neural networks (CTRNNs) have proven

useful in the evolution of oscillatory behaviors that are common in bipedal

controllers (McHale and Husbands 2004), so HyperNEAT will be augmented

in this thesis to evolve this type of network. Furthermore, novelty search

(Lehman and Stanley 2008), which has been shown to avoid deception in

some problems, will provide an alternative to the fitness function because the

biped walking problem is notoriously deceptive (Allen and Faloutsos 2009).

NEAT and HyperNEAT are reviewed next.

2.2 NEAT

HyperNEAT is an extension of the Neuroevolution of Augmenting Topolo-

gies (NEAT) algorithm for evolving ANNs, which has performed well in a

number of control and decision-making problems (Stanley and Miikkulainen

2002; Stanley et al. 2005; Lehman and Stanley 2008). NEAT begins with a

population of simple ANNs and complexifies them over a series of evolution-

ary generations by adding and removing nodes and connections via mutation.

By evolving networks in this fashion, NEAT is capable of generating increas-

ingly complex ANNs until an acceptable level of complexity is discovered
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for the problem domain. Therefore, NEAT generally evolves the simplest

ANNs necessary to solve the problem. In addition, high-level functionality

discovered early in the evolutionary process can be maintained and elabo-

rated upon in later generations. Stanley and Miikkulainen (2002) provides a

more detailed description of the NEAT algorithm and how it operates.

2.3 HyperNEAT

The primary appeal of HyperNEAT for this experiment is its use of an indirect

encoding (Bentley and Kumar 1999; Bongard 2002; Hornby and Pollack 2002)

of ANNs, which is different from many neuroevolution techniques, including

NEAT. Instead of directly encoding the ANN, in which each part of the

solution’s representation corresponds to a single component in the final ANN

(Hornby and Pollack 2001; Stanley and Miikkulainen 2003; Reisinger et al.

2005), HyperNEAT concisely describes the connectivity of the final ANN

with a simple description; the description of the ANN is often significantly

smaller than the final ANN described (Stanley et al. 2009; Gauci and Stanley

2010). By describing the final ANN in such a fashion, high-level functionality,

once discovered, can easily be re-used in the final ANN without having to

re-discover the functionality in another area (Stanley 2007). In the biped

walker domain, this capability can potentially help: the repetitive, oscillatory

behavior of walking can be discovered for one leg and mirrored onto the other

leg of the walker by simply copying the description over for the other leg.

HyperNEAT, which is reviewed in this section, has succeeded in numerous
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difficult domains in which discovering regularities in connectivity patterns

is known to be important (Gauci and Stanley 2008; Clune et al. 2009b,a;

Stanley et al. 2009). A more detailed description of HyperNEAT is provided

in Stanley et al. (2009) and Gauci and Stanley (2010).

In the HyperNEAT algorithm, NEAT still evolves a simple ANN; however,

this ANN is no longer the final ANN for the solution, but instead the indirect

encoding of the final ANN. This special ANN that encodes a second ANN

is called a compositional pattern producing network (CPPN; Stanley 2007).

CPPNs encode compositions of functions, where each function (which is the

activation function of each node) is loosely related to a useful geometric

regularity. Of special interest in the biped walking domain, CPPNs are

capable of using a Gaussian function to produce symmetry in the final ANN.

The appeal of encoding the final ANN by this method is that patterns of

connections can be represented as a network of simple functions. In short,

NEAT still evolves an ANN, but this ANN (called a CPPN) encodes the final

network instead of being the final network itself.

The substrate is a set of nodes with a pre-defined geometry whose con-

nectivity is decided by the CPPN (Stanley et al. 2009). By providing a

fixed-topology ANN as the substrate, the experimenter can provide knowl-

edge about the geometry of the problem to HyperNEAT. HyperNEAT is then

able to exploit the geometry of the problem, which was previously not pos-

sible with directly-encoded ANNs. A detailed description of the substrates

used in the experiments in this thesis is provided in the next section.
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Figure 1: CPPN-based Encoding of a Substrate. The process by which
HyperNEAT generates a substrate is demonstrated. The CPPN (3) generates the
connection weights on the substrate (1).

The substrate connectivity is generated by first querying every possible

connection between nodes in the substrate (Figure 1, Step 1): the coordinates

of the two connecting nodes are provided as inputs to the CPPN (Figure 1,

Step 2). Once activated, the CPPN outputs a weight, which is assigned as

the weight of the connection between the two nodes (Figure 1, Step 3). If the

generated weight is too low, the connection is not expressed. For example,

to generate the connection weight between the nodes at coordinates (x1, y1)

and (x2, y2), the coordinates x1, y1, x2, y2 are given as input to the CPPN.

The CPPN is then activated and the resulting output is assigned as the

connection weight between the two nodes, if the generated weight exceeds

the minimum connection threshold. By performing this procedure for every

possible connection within the substrate, the CPPN generates a connectivity
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pattern over the substrate. Figure 1 visually demonstrates this process.

2.4 Continuous Time Recurrent Neural Networks

In this thesis HyperNEAT is modified for the first time to encode continu-

ous time recurrent neural networks (CTRNNs). CTRNNs have often been

applied in the biped walker domain in the past because they maintain stabil-

ity even with large, sudden changes in their inputs (McHale and Husbands

2004). This stability is accomplished by gradually integrating the output of

every node over a given amount of time throughout the simulation, called

the time constant for that node. The significant change in HyperNEAT to

encode CTRNNs is that CPPNs also generate the time constants and biases

for every node in the substrate. The CPPN generates the time constant and

bias for a node similarly to how it generates the connection weight between

two nodes, except instead of supplying x2, y2 as the input for the second

node, the values 0.0, 0.0 are supplied instead. That way, CPPN can return

node-centric as opposed to connection-centric values.
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3 Methodology

This section describes the methods, techniques and algorithms that are in-

troduced in the biped walker experiment.

3.1 Biped Substrates

An important factor in creating experiments with HyperNEAT is the design

of the substrate. Two substrates were designed for use with the biped walker

experiment: a two-dimensional substrate and a three-dimensional substrate.

Both substrates were designed with the biped walker model geometry in mind

to best represent the model within the substrate.

The two-dimensional substrate (Figure 2) employs only the x and y axes

and is the simpler of the two substrates. The flow of information from the

input layer to the output layer is along the y-axis. All input nodes are

evenly distributed along y = 0.0; all hidden nodes are along y = 0.5. Finally

output nodes are arranged along y = 1.0. In the output layer, the three left-

most nodes represent the left leg effectors and the three right-most nodes

represent the right leg effectors. Figure 2 shows the input layer with six

inputs representing the six joint angles of the biped model; however, another

configuration for the substrate is to eliminate all input nodes except nodes

(0.167, 0.0) and (1.000, 0.0), which represents only whether the feet of the

biped walker are touching the ground or not.

The three-dimensional substrate (Figure 3) employs the x, y and z axes.
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Hidden layer
y = 0.5
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Figure 2: Two-Dimensional Substrate. A visualization of the two-dimensional
substrate in the biped walker experiment is shown.

The flow of information from the input layer to the output layer is along the

z-axis. All input nodes are distributed in the shape of the biped walker along

z = 0.0; all hidden nodes are along z = 0.5 and all output nodes are along

z = 1.0. In the output layer, the three left-most nodes represent the left leg

output controls and the three right-most nodes represent the right leg output

controls. Figure 3 shows the input layer with six inputs; however, as with

the two-dimensional substrate, another configuration for the substrate is to

eliminate all input nodes except nodes (-1.0, -1.0) and (1.0, -1.0) to represent

only whether the feet of the biped walker are touching the ground or not.
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Figure 3: Three-Dimensional Substrate. The three-dimensional substrate for
the biped walker experiment is depicted.

3.2 Functional Modularity

According to Wiegand et al. (2009), functional modularity is the localization

of functionality according to structure. For example, if the human brain is

examined while the human performs a specific action, a specific section of the

brain, or module, is observed to correspond to that action (Bartels and Zeki

2005). It is widely believed that functional modularity plays an important

role in the functional capacity of the human brain and in evolutionary com-

putation. Thus it could be worthwhile to encourage functional modularity

within the substrates of the experiment.

Functional modularity can be encouraged in HyperNEAT by modifying

the connection threshold parameter; if a connection weight value between

two nodes does not exceed the connection threshold, then the connection is
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not expressed. The connection threshold, TAB, for two nodes A and B can

be changed from a static value to:

TAB = tmin + tmul ∗ EAB, (1)

where tmin is the minimum threshold value desired (for self-recurrent con-

nections), tmul is the threshold multiplier value, and EAB is the Euclidean

distance between nodes A and B. The effect is that if nodes A and B are close

on the substrate, their connection is more likely to be expressed, whereas if

nodes A and B are far apart, their connection is less likely to be expressed.

In the case of the two-dimensional substrate (Figure 2), only the x coor-

dinate of the nodes is taken into account in the distance calculation because

the only functional modularity to be discovered is along the y-axis (i.e. left

leg controls vs. right leg controls). For the same reason, only the x and y

coordinates of the nodes in the three-dimensional substrate (Figure 3) are

taken into account in the distance calculation.

3.3 Novelty Search for Bipeds

Past experiments with NEAT have indicated that the regular fitness metrics

are deceptive in the biped walker domain (Allen and Faloutsos 2009). While

searching the biped walker behavior space seeking only the longest-walking

gait may seem intuitive, it does not discover very effective gaits because

regular fitness metrics become stuck on simple gaits that fall down quickly
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and are unable to elaborate upon them from there (Allen and Faloutsos 2009;

Lehman and Stanley 2008). Thus, it may become necessary in the search to

explore less-effective gaits in the hope that later elaborating upon them will

result in a longer-walking gait than previously discovered.

One means of accomplishing this is searching for the most novel walk-

ing behaviors, that is, by awarding the highest fitness to the most unique

walking behaviors in the current population amongst all walking behaviors

ever discovered in the run (Lehman and Stanley 2008). This fitness metric

is called novelty search and effectively evolved biped walkers with regular

NEAT in informal experiments (unpublished; by Joel Lehman in the EPlex

group). Thus instead of only looking at how far the biped walks, novelty

search defines a behavioral characterization and instead explores the behav-

ior space of the biped walker domain. Lehman and Stanley (2008) provides

a more detailed description of the Novelty Search metric.

The same novelty search behavioral characterization used in the biped

walker experiment with NEAT (by Joel Lehman in the EPlex group) is used

in this experiment. In one second intervals throughout the simulation, the

biped’s center of mass is recorded according to the following equation:

x′
k = sign(xk − x0) ∗ (xk − x0)

2 (2)

y′k = sign(yk − y0) ∗ (yk − y0)
2, (3)

where x0 and y0 are the biped’s initial center of mass in the xy-plane and
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xk and yk are the biped’s center of mass recorded at simulation second k.

If the biped falls at any point before the end of the simulation, the re-

maining xk’s and yk’s are set to the final xk and yk before it fell to the

ground. Upon termination of the simulation, all of the recorded center of

mass values (x′
i,y

′
i), where 1≤ i ≤ m, are concatenated into a list to form

[(x′
1,y

′
1),(x

′
2,y

′
2),...,(x

′
m,y′m)]. The biped’s novelty value is then calculated by

adding together all of the squared distances between the biped’s behavioral

characterization values (i.e. the center of mass records). It is important to

note that two biped walkers that end up at the same location by means of a

different path will receive two different novelty values. The two novelty values

will be different because the behavioral characterization values are recorded

throughout the simulation. These different novelty values then indicate that

the two biped walkers are different from each other.

By defining biped walking behaviors in this way, novelty search does not

necessarily search for the longest-walking behaviors. In fact, novelty search

can indicate that a biped walking behavior that falls down quickly is just

as good as a biped walking behavior that walks a long distance. Neverthe-

less, novelty search achieves the goal of continually exploring new, complex

biped walking behaviors and can potentially discover a more stable walking

behavior than normal fitness metrics by opening up the search space.
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4 Experiments

This section describes the biped walker experiment and the attempted solu-

tions.

4.1 Biped Walker Domain

The goal of the biped walker is to walk as far as possible from its starting

point without falling down within the allotted amount of time. If at any

point the biped walker falls down, the simulation for that biped walker con-

troller is terminated and the maximum distance walked by the biped walker

is recorded. To accomplish this sequence, the evolved ANN is given control of

the six joints of the biped walker model and allowed to determine the angles

as the simulation progresses, similar to the biped control model in Reil and

Husbands (2002). To confirm the experiments previously done in the biped

walker domain with NEAT (by Joel Lehman in the EPlex group), the NEAT

experiment is attempted once again. Confirming that stable, long-walking

gaits can be evolved by the NEAT experiment will validate that the novelty

search approach is a good basis for implementing HyperNEAT in the biped

walker domain.

Following the above control model, the substrates in this experiment are

designed to express the geometry of the biped walker problem (Figure 4).

All of the right leg joint nodes are placed to the right of the y-axis and all of

the left leg joint nodes are placed to the left of the y-axis in the substrate,
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Output layer of substrate

x
y

Biped model

Left knee
pitch angle

Left hip
roll angle

Left hip
pitch angle

Right knee
pitch angle

Right hip
pitch angle

Right hip
roll angle

Right hip
pitch and roll

Right knee
pitch

Left hip
pitch and roll

Left knee
pitch

Figure 4: Biped to Substrate Mapping. The biped model and its joint loca-
tions are compared to the joint locations in the output layer of the substrate.

which maps directly to the biped model. All nodes are either on or below

the x-axis to enforce that the only symmetry to be discovered in walking is

between the two legs. For each leg, the two hip angle nodes are placed above

the knee angle node, further encoding the geometry of the biped model in

the substrate. Although it would be preferable to have both hip angle nodes

for each leg in the same location, nodes are not able to occupy the same

position in HyperNEAT substrates, so a compromise is chosen instead.
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Beyond the design of the output layer of the substrate, many experi-

mental design decisions are explored. Because the substrate link weights,

biases and time constants are all generated by the CPPN, a range for each

such parameter must be defined. The first option is to enforce common link

weight, bias and time constant ranges that have been enforced in successful

HyperNEAT experiments in the past (Stanley et al. 2009; Gauci and Stan-

ley 2008, 2007). These common ranges may initially prove useful; however,

better ranges for the biped walker problem may exist. To get a better idea

of what these optimal ranges are, the longest-walking and most stable biped

walkers from the NEAT-evolved biped walker experiment (by Joel Lehman

in the EPlex group) are examined.

Because the biped walker problem has not been previously attempted

with HyperNEAT, it is currently unknown what substrate configuration is

best. As such, a wide array of substrate configurations can be explored. The

geometry of the substrate can either be in two or three dimensions. Previous

experiments in which HyperNEAT evolved quadruped walkers had success

with three-dimensional substrates (Clune et al. 2009b), hinting that three-

dimensional substrates may also work well for the biped walker problem. In

this experiment, the two substrates described in Section 3.1 are tested.

Macro-level properties of the connectivity may also be significant. A feed-

forward substrate is a substrate in which the links between nodes only point

from the input layer to the hidden layer and from the hidden layer to the

output layer; the flow of information is thus directly from the input layer to
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the output layer. In contrast, a recurrent substrate is a substrate in which

links are allowed to connect backward, e.g. a node in the output layer is

allowed to connect to a node in the hidden layer, or even to another node in

the output layer. Both substrates can be configured as either feed-forward

or recurrent. However, some level of recurrence is often required to create

oscillatory behaviors, which are needed to walk.

Finally, the input layer of the substrate can be configured in a variety of

ways depending on what information is to be given to the CTRNN controlling

the biped walker. The six joint angles of the biped walker model can be given

as inputs to the CTRNN, in which case the input layer can be designed

exactly as the output layer in Figure 4. Alternatively, two foot touch sensors

can be given as input; these foot touch sensors would input a value of 1.0

or 0.0, indicating whether their corresponding foot is currently touching the

ground or not, respectively. These two substrate input configurations are

tested in this thesis. In the previous biped walker experiment with NEAT, the

two-input foot touch sensor input configuration performed most promisingly,

perhaps indicating that this input configuration is best for the biped walker

problem.

Following the precedent in the previous experiment with NEAT in the

biped domain (by Joel Lehman in the EPlex group), fitness is compared to

novelty in this case with HyperNEAT instead of NEAT. Fitness is how far

the biped walker walked from its initial position, which is a common fitness

measure amongst evolutionary biped walker experiments (Hein et al. 2008;
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McHale and Husbands 2004; Reil and Husbands 2002; Van de Panne and

Lamouret 1995). Distance traveled is intuitive to the biped walker problem

as it proportionally rewards the biped walkers that move the furthest, which

is an indication that the biped walker has a stable, oscillatory gait. This

fitness measure will be compared to novelty search, described in Section 3.3.

Functional modularity is widely believed to play an important role in

the functional capacity of the human brain and in evolutionary computation

(Wiegand et al. 2009). Because it may apply well to the biped walker do-

main, in some experiments functional modularity is encouraged within the

substrate, as described in Section 3.2, to see if it helps to evolve stable os-

cillatory gaits. By encouraging modularity within the substrate, it is hoped

that the substrate can loosely break into two functional modules: a left leg

module with the three left-most nodes of each layer, and a right leg module

with the three right-most nodes of each layer. These modules would indicate

that there is a strong correlation between the right-and-left leg inputs and

the right-and-left leg outputs, respectively.
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5 Results

From an early point in the experimentation, it became clear that the three-

dimensional substrate, though logically designed, was not well-suited for the

biped domain. No experiments were able to evolve a stable bipedal gait

with the three-dimensional substrate, regardless of the parameters changed:

input configuration, functional modularity, connectivity, fitness function, etc.

In addition, champion walker genomes from the NEAT experiment mapped

more clearly to the two-dimensional substrate when converted to a substrate.

Due to these observations, the three-dimensional substrate was abandoned

early in experimentation in favor of the two-dimensional substrate.

By studying the champion walkers from the NEAT experiments, a better

parameter range for the HyperNEAT biped walker experiment can be de-

termined. Table 1 lists the ranges that evolve the most stable biped walker

gaits. These ranges were discovered by calculating the average minimum and

maximum values of the link weights, biases and time constants of the biped

walkers generated in the earlier NEAT-based biped walker experiment.

As expected, it became clear that a certain level of recurrence is required

within an ANN to exhibit oscillatory behavior. Thus experiments with the

feed-forward substrate were unable to successfully evolve oscillatory bipedal

gaits, whereas substrates that allow recurrence were often able to exhibit

at least oscillatory bipedal behavior. Of the substrate input configurations

explored, only the two-input foot touch sensor configuration resulted in a
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Parameter Range
Link weight [-5.0, 5.0]
Bias [-4.0, 4.0]
Time constant [0.1, 2.0]

Table 1: HyperNEAT Parameter Ranges Used in Biped Walker Experi-
ment. The ranges are shown in which the link weights, biases and time constants
were constrained when a substrate was generated by a CPPN in the biped walker
experiment.

Figure 5: Comparison of Fitness and Novelty Search in the Biped Walker
Domain. The average and farthest distance walked by biped walkers evolved with
fitness and novelty search as a fitness metric are compared.

stable bipedal gait. This result confirms the findings in the previous biped

walker experiment with NEAT (by Joel Lehman in the EPlex group).

Further confirming the findings of Joel Lehman in the previous biped

walker experiment with NEAT, novelty search also evolves longer-walking

bipeds in HyperNEAT. As demonstrated in Figure 5, novelty search is bet-

ter able to explore the deceptive biped walker behavior space to discover

longer-walking gaits than the fitness metric of distance walked. Though the

fitness metric is able to discover biped walking behaviors which walk two to
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Figure 6: Effect of Variable Connection Threshold on Connectivity. The
average number of connections of each length are plotted for each FM multiplier.
FM indicates Functional Modularity and the number following it indicates the
value of tmul in the variable connection threshold equation. No FM indicates a
static connection threshold of 0.3.

three meters at a faster rate than novelty search, the fitness metric quickly

plateaus and is unable to improve upon the walking behaviors from there.

In contrast, novelty search is capable of continually discovering new, farther-

walking biped walking behaviors throughout the entire experiment.

To confirm that the functional modularity configuration is having the

expected effect on the connectivity of the substrate, the average number of

connections of each length are plotted in Figure 6. A tmul value of 0.15 results

in slightly more connections than the static threshold configuration overall,

which is expected because the maximum value possible for EAB is
√

2 in the

two-dimensional substrate (i.e. the distance from the bottom left corner to

the top right corner of the substrate). The low tmul value creates a lower

connection threshold, ranging from 0.15 (for self-recurrent connections) to

0.36, allowing connections to be more easily expressed. A higher tmul value
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(a) Average Performance (b) Best Performance

Figure 7: Performance Comparison of Substrate Configurations. Various
substrate configurations are compared based on the distance the evolved walker
travels as learning progresses. FM indicates functional modularity and the num-
ber following it indicates the value of tmul in the variable connection threshold
equation. 10 Hidden Nodes is a substrate configuration exactly the same as the
Normal configuration, except with 10 hidden nodes in the hidden layer instead
of only 6. Plot (a) compares the average distance traveled of the evolved biped
walkers while (b) compares the distance traveled of the best walkers evolved for
each configuration.

prohibits connectivity, although not in the manner expected. Interestingly, as

the tmul value increases from 0.15 to 0.25, the average number of connections

drops significantly compared to the static threshold (p < 0.01), though as

the tmul value increases from 0.25 to 0.45, the average number of connections

begins to rise again.

The above findings result in a two-dimensional, recurrent substrate with a

two-input foot touch sensor input configuration; the link weights, biases and

time constants are restricted to the ranges in Table 1. Novelty search is the

fitness function. This substrate configuration is used as a basis for the biped

performance comparison in Figure 7, labeled as the Normal configuration.

Of the functional modularity experiments, only the experiment with the tmul
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Figure 8: Illustration of Champion Biped CPPN and Substrate. The
champion’s CPPN is depicted in (a), where (x1, y1, z1, x2, y2, z2) are the inputs.
The top three nodes are the outputs, from left to right: connection weight, node
bias and node time constant. The activation function is the label inside the node,
where Sin = Sine; Cos = Cosine; G = Gaussian; and L = Linear. The bias has a
standard value of 1.0. The champion’s substrate that is generated by the CPPN
is shown in (b), where L and R represent nodes corresponding to Left and Right
legs of the biped model, respectively. From left to right, the inputs are: Left-foot
foot touch sensor, Right-foot foot touch sensor. The outputs, from left to right,
are: Left knee pitch, Left hip roll, Left hip pitch, Right hip pitch, Right hip roll,
Right knee pitch.
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Figure 9: Visualizing Symmetry in a Subset of the Champion Substrate’s
Connections. A subset of the champion substrate’s connections in Figure 8b is
shown to more easily discern the symmetry within the substrate.

value of 0.15 did not hamper the performance of the Normal configuration. In

fact, the functional modularity experiment with the tmul value of 0.15 appears

to perform slightly better than the Normal configuration both on average and

in the best case, though the difference is not significant. There is seemingly no

difference in the performance of the Normal configuration and the 10 Hidden

Nodes configuration on average, though the Normal configuration performs

somewhat better in the best case, though the difference is not significant. The

main result is that in the best settings, HyperNEAT can evolve oscillatory

gaits and balance for several meters, although the behavior is still brittle (i.e.

it can fall easily).

Figure 8 illustrates the CPPN and substrate of the overall champion biped
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walker from all of the experiments, which is from the functional modularity

experiment with a tmul value of 0.15, whose fitness curve appears in Figure

7b. Figure 9 shows a subset of the full champion substrate to highlight

the symmetry in its connectivity pattern. In particular, the left foot touch

sensors pass positive activation to the left-side output nodes and negative

information to right-side output nodes. The right-foot foot touch sensor

connections exhibit the opposite pattern. Thus the substrate exploits the

inherent symmetry of the biped, as was hoped for HyperNEAT.

In summary, the results of the HyperNEAT biped walker experiment in-

dicate that the best substrate configuration is a two-dimensional, recurrent

substrate with a two-input foot touch sensor input configuration and the

link weights, biases and time constants restricted to the ranges in Table 1.

Novelty search outperforms pure fitness as a fitness function in the Hyper-

NEAT biped domain. The functional modularity equation affected substrate

connectivity as expected by discouraging longer connections and encouraging

shorter connections, though it had a negative effect on performance as the

multiplier was increased. Changing the configuration of the hidden layer of

the substrate had no notable effect on performance. In the best-performing

controllers, HyperNEAT discovered symmetry between the left and right leg

areas of the substrate.
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6 Discussion

It is well-known that natural bipeds such as humans evolved through an

indirect encoding, i.e. DNA (Gilbert 2000). In addition, bipedal walking

has a regular pattern to it, which indirect encoding should be able to exploit.

However, prior to this thesis, an indirect encoding has not been applied to the

biped walker domain. In this thesis, I evolved a basic biped walking behavior

with HyperNEAT. HyperNEAT generated oscillatory behavior, balanced a

biped for over five meters, and evolved symmetries in the substrate. However,

despite these achievements, the biped walkers evolved with HyperNEAT do

not walk as far, on average, as the biped walkers that were evolved in the

NEAT experiments, which employ a direct encoding.

This result is important because it exposes a weakness in indirect en-

coding that may not have been discovered prior to this thesis. It is diffi-

cult for an indirect encoding to precisely tune the connection weights of the

ANN controller, which may be important in the biped walker domain. There

is a certain degree of brittleness in the indirectly-encoded ANN controllers

and they are highly susceptible to being rendered ineffective by small mu-

tations. These observations are surprising because the same problem is not

observed in nature: human beings experience some mutations every gener-

ation (Gilbert 2000) and are still capable of learning highly-tuned walking

behaviors. Thus it may be that a key ingredient for the solution of the biped

walker problem is missing.
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Perhaps what is missing, then, is the ability to precisely tune the con-

nection weights evolved by the indirect encoding during the agent’s lifetime.

Even evolved biped walkers that walk with a stable, oscillatory gait still ex-

hibit slight imperfections in their gait that eventually build up and lead to

losing balance and falling. If these imperfections were able to be mitigated

during the simulation through adaptation, the controller would be able to dy-

namically fix them and maintain balance. Furthermore, the controller could

potentially also adapt to new walking tasks during the simulation, such as

walking up stairs for the first time or walking after a foot is damaged. There

is evidence of such lifetime adaptation in nature: natural bipeds do not begin

walking perfectly upon birth. Instead, they slowly adapt to their body and

learn to walk efficiently as they grow into adulthood. Natural bipeds are also

capable of adapting to changes in their body: if a natural biped experiences

a physical change in its body, such as injuring its leg, it is able to adapt to

this change and effectively walk with a limp. It is therefore likely that an

adaptive mechanism needs to be added to the indirect encoding model to

evolve more natural, longer-walking biped behaviors.

Another feature of the model that merits further investigation is the

source of feedback to the biped controller during simulation. Instead of only

receiving the two foot touch sensors as feedback, the biped controller could

also benefit from a source of feedback indicating the model’s current balance.

Natural bipeds such as humans can perceive balance through the vestibular

system; a simulated biped model could potentially benefit from a similar

29



artificial vestibular system. Such a system could be simulated, e.g. by pro-

viding the biped controller with information about the model’s current center

of mass during the simulation. Two useful means of providing such infor-

mation could be (1) to simply provide the biped model’s current center of

mass in the xy-plane or (2) to provide the distance from the biped model’s

current center of mass to a perfectly-balanced center of mass point. In either

case, the biped walker controller would be constantly provided with rele-

vant information about its current balance, allowing the controller to adjust

accordingly.

The scope of this thesis is not limited to biped robots. This research

is a preliminary step toward evolving fully-animated ragdolls that can po-

tentially be deployed in video games and animated film. Instead of scripts

controlling the models, ANN controllers may someday provide realistic, dy-

namic reactions to the model’s surroundings and save animators the effort

of creating an animation for every reaction. In a presentation in 2009, an

Electronic Arts employee stated that the company wanted to move toward

using ragdoll models in their Madden series (White 2009). Research such as

that in this thesis will be necessary to realize this goal.
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7 Conclusion

This thesis presented a new approach to evolving bipedal walking behaviors.

With the combination of an indirect encoding, HyperNEAT, and novelty

search to mitigate deception, basic biped walking behavior is evolved. Al-

though indirect encoding would ideally evolve biped walking behavior as fluid

and stable as that in nature, the results in this thesis suggest that such flu-

idity is beyond the current state of the art. Yet this gap suggests a possible

future path through adding adaptive mechanisms to evolving stable, longer-

walking biped behaviors.
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